Role of TRPC1 channel in skeletal muscle function.

نویسندگان

  • Nadège Zanou
  • Georges Shapovalov
  • Magali Louis
  • Nicolas Tajeddine
  • Chiara Gallo
  • Monique Van Schoor
  • Isabelle Anguish
  • My Linh Cao
  • Olivier Schakman
  • Alexander Dietrich
  • Jean Lebacq
  • Urs Ruegg
  • Emmanuelle Roulet
  • Lutz Birnbaumer
  • Philippe Gailly
چکیده

Skeletal muscle contraction is reputed not to depend on extracellular Ca2+. Indeed, stricto sensu, excitation-contraction coupling does not necessitate entry of Ca2+. However, we previously observed that, during sustained activity (repeated contractions), entry of Ca2+ is needed to maintain force production. In the present study, we evaluated the possible involvement of the canonical transient receptor potential (TRPC)1 ion channel in this entry of Ca2+ and investigated its possible role in muscle function. Patch-clamp experiments reveal the presence of a small-conductance channel (13 pS) that is completely lost in adult fibers from TRPC1(-/-) mice. The influx of Ca2+ through TRPC1 channels represents a minor part of the entry of Ca(2+) into muscle fibers at rest, and the activity of the channel is not store dependent. The lack of TRPC1 does not affect intracellular Ca2+ concentration ([Ca2+](i)) transients reached during a single isometric contraction. However, the involvement of TRPC1-related Ca2+ entry is clearly emphasized in muscle fatigue. Indeed, muscles from TRPC1(-/-) mice stimulated repeatedly progressively display lower [Ca2+](i) transients than those observed in TRPC1(+/+) fibers, and they also present an accentuated progressive loss of force. Interestingly, muscles from TRPC1(-/-) mice display a smaller fiber cross-sectional area, generate less force per cross-sectional area, and contain less myofibrillar proteins than their controls. They do not present other signs of myopathy. In agreement with in vitro experiments, TRPC1(-/-) mice present an important decrease of endurance of physical activity. We conclude that TRPC1 ion channels modulate the entry of Ca(2+) during repeated contractions and help muscles to maintain their force during sustained repeated contractions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation.

Transient receptor potential canonical (TRPC) channels provide cation and Ca(2+) entry pathways, which have important regulatory roles in many physio-pathological processes, including muscle dystrophy. However, the mechanisms of activation of these channels remain poorly understood. Using siRNA, we provide the first experimental evidence that TRPC channel 1 (TRPC1), besides acting as a store-op...

متن کامل

Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle.

Extensive studies performed in nonexcitable cells and expression systems have shown that type 1 transient receptor potential canonical (TRPC1) channels operate mainly in plasma membranes and open through phospholipase C-dependent processes, membrane stretch, or depletion of Ca(2+) stores. In skeletal muscle, it is proposed that TRPC1 channels are involved in plasmalemmal Ca(2+) influx and stimu...

متن کامل

The TRPC1 Ca2+-permeable channel inhibits exercise-induced protection against high-fat diet-induced obesity and type II diabetes

The transient receptor potential canonical channel-1 (TRPC1) is a Ca2+-permeable channel found in key metabolic organs and tissues, including the hypothalamus, adipose tissue, and skeletal muscle. Loss of TRPC1 may alter the regulation of cellular energy metabolism resulting in insulin resistance thereby leading to diabetes. Exercise reduces insulin resistance, but it is not known whether TRPC1...

متن کامل

TRPC3-interacting triadic proteins in skeletal muscle.

The expression of TRPC3 (canonical-type transient receptor potential cation channel type 3) is tightly regulated during skeletal muscle cell differentiation, and a functional interaction between TRPC3 and RyR1 [(ryanodine receptor type 1), an SR (sarcoplasmic reticulum) Ca2+-release channel] regulates the gain of SR Ca2+ release during EC (excitation-contraction) coupling. However, it has not b...

متن کامل

Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity.

Transient receptor potential (TRP) channels are nonselective cation channels, several of which are expressed in striated muscle. Because the scaffolding protein Homer 1 has been implicated in TRP channel regulation, we hypothesized that Homer proteins play a significant role in skeletal muscle function. Mice lacking Homer 1 exhibited a myopathy characterized by decreased muscle fiber cross-sect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 298 1  شماره 

صفحات  -

تاریخ انتشار 2010